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 This paper enhances the Convolutional Neural Network (CNN) to increase accuracy in 

recognizing faces in a crowd. The enhanced CNN is built upon the well-known VGG-19 

which a very deep learning CNN technique. Prior to the recognition phase, the image data 

was preprocessed using standard image processing mechanism. Experiments on existing 

publicly available Labeled Faces in the Wild (LFW) dataset were conducted. The 

proposed enhanced-CNN outperforms the other existing methods and achieved up to 

99.91% accuracy. The best accuracy was obtained from the experiment on LFW-100 sub-

dataset, which has 5 persons with 100 images/person. In future, the proposed enhanced-

CNN can be used for the development of Hajj safety alert system. 
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1. Introduction 

 

Among the vision researchers, face recognition and verification 

have become one of deep focus research area [1, 2]. The ability 

of the face regonition/verification to identify and to process the 

emotional state, attention concentration, and the intent of others 

makes the face recognition/ verification tremendous societal 

importance [3-5]. Moreover, research works in [6] and [7] 

introduced Labeled Faces in the Wild (LFW) dataset to 

encourage further researches using images taken in common, 

everyday settings and Ethnics.  

 

Labeled Faces in the Wild (LFW) is a database of face 

photographs intended for investigation the unconstrained face 

recognition problems. This database was created and maintained 

by researchers at the University of Massachusetts, Amherst [8]. 

The researchers in [8] collected 13,233 images of 5,749 people 

from the web, then used the Viola Jones face detector to detect 

and center them. 1,680 of the pictures have two or more distinct 

photos in the dataset. The original database contains four 

different sets of LFW images and three different types of 

"aligned" images. According to the researchers, deep-funneled 

images produced superior results for most face verification 

algorithms compared to the other image types. 

 

On the other hand, the mass movement of people during hajj is 

the largest in the world and causing world’s worst traffic jam. 

As the number of visitors rose each year, the problem got 

worse. Several crowd crush and stampede disasters have 

happened in the past. To avoid such disasters, it is imperative to 

develop a real-time alert and monitoring system that able to 

warn early on any movement anomalies and to recommend the 

best action. When the system recognizes numbers of faces of a 

group of ethnics at certain time and they are not supposed to be 

in the passage during that time, an analysis is performed and an 

alert may triggered.  
 
Deep Learning is a part of Machine Learning in Artificial 

Intelligence (AI). Deep learning algorithms composed of 

Artificial Neural Networks with more than one hidden layer, 

called as Deep Neural Networks (DNNs). The DNNs are used 

to model complex non-linear relationships in both supervised 

and unsupervised settings [9]. Compared to traditional machine 

learning algorithms, deep learning models can provide 

significant improvement in areas such speech recognition and 

language translation as evidenced by the significant 

improvement in Google Translate after switching from Phrase 

Based Machine Translation (PBMT) to Neural Machine 

Translation (NMT). The different type of Deep Learning 

models includes Deep Auto encoders, Convolutional Neural 

Networks (CNNs), Restricted Boltzmann Machines (RBMs), 

Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) models [10]. 

 
This paper proposes an enhanced Convolutional Neural 

Network (CNN) deep learning architecture for a face 

recognition system. The enhanced CNN is built upon the well-

known VGG-19, which is a very deep learning CNN technique. 

Thus, the proposed method contributes towards the core 

recognition engine for real time crowd accident alert system 

during hajj session and the main contribution of this paper (also 

the differences from the existing CNNs) are: 
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• A new architecture of VGG-19 CNN by implementing 

recurrent connections in neurons inside the convolutional 

layers. 

• Introducing the use of :  

 

- Multi-Bias non-linear Activation (MBA) function instead 

of Batch normalization  

- Concatenated ReLU (CReLU) instead of ReLU function 

- Sequence of Enhanced Convolutional Layers (ECLs) for 

Enhancing Block 

- Data augmentation 

- Spatial Pyramid Pooling (SPP) layer before the fully 

connected layers to eliminate the fixed input image 

constraint. 

 

• Replacing the use of the maxpooling layers by a new efficient 

Generalizing Pooling layers to adapt more to complex 

patterns. 

 

The paper is structured as follows. Section 2 summarizes the 

previous works on LFW recognition and deep learning. Section 

3 discusses the proposed recognition method. Section 4 

discusses the experimental set up, results and discussion and 

lastly, conclusion is given in Section 5. 

 

2. Related Works 

 

Research on face recognition and verification started by 

recognizing face from one example view [1,2], and then it 

grows to some new issues [3]. In principle, face verification is 

to conclude the matching of two face images without any 

previous examples of those identities. Let m and n represent the 

two images, image m can be observed as a single training 

example as an identity of a specific person. Therefore, the face 

verification can be outlined as a binary classification problem, 

i.e. to decide whether image n is in the same class as image m or 

not.  

 

The use of Convolutional Neural Network (CNN) to learn a 

metric between face images has been discussed by Chopra et al. 

[3]. A structure of the face recognition problem was specifically 

discussed as a large number of classes problem with small 

numbers of training examples per class. Observation on the 

difficulties in Augmented Reality database and indication of 

current positive application of CNNs to face 

recognition/verification was reported by Martinez and 

Benavente in [4].  

A method for determining whether two images was the same 

object from a small number of examples was introduced by 

authors in [2, 5], using images available in [6, 7]. The images 

were taken from selected news articles, representing people in a 

wide variety of settings, lighting, poses, and expressions. Huang 

et al. [8] conducted further work by removing duplicate images, 

re-labelling some images by hand, preparing protocols to use 

the images. Then released the dataset as “Labeled Faces in the 

Wild” in the LFW technical report [8]. Many works have been 

carried out on face recognition using LFW dataset; Table 1 

shows six standard methods on LFW recognition along with 

their accuracies. 

 

Up to now, the highest reported accuracy on LFW is 99.63%, 

achieved by by Schroff et al. [17]. The authors reported that out 

of 6000 image pairs, the method can recognize correctly 5978 

pairs. The real errors were only 17 pairs; due to five of the total 

22 errors correspond to labeling errors in LFW.  

 

Krizhevsky et al. [18] introduced AlexNet, as one of the most 

renowned CNN architectures for classification. The AlexNet has 

structure of feature maps of {96,256,384,384,256} kernels with 

pooling on the 1st, 2nd, and 5th layers; kernel sizes were 

{11,5,3,3,3}, respectively. Two fully connected layers of 4096 

units are added to the end of the network, which resulted in 60 

million parameters. Researchers then tend to look for more deep 

models with more complex building blocks. Authors in [19, 20] 

showed that more deep networks have more ability to signify 

definite function classes more faster and effective. The authors 

also stated that in general, the more deep networks have a lesser 

memory footprint for the duration of inference. This benefit 

allows the deployment of the networks on mobile computing 

devices. The most popular deeper network VGG-19 is a deep 

network with 19 layers and uses fixed 3x3 sized kernels was 

developed by Simonyan and Zisserman [21]. The VGG-19 won 

the 2014 ImageNet challenge. 

 

A 22-layer network named GoogLeNet was introduced by 

Szegedy et al. [22]. The GoogLeNet utilizes an inception blocks 

[23]. The inception blocks is a nested network, where the input 

is branched into several different convolutional sub-networks. 

At the end of the block, the nested network is concatenated. To 

reduce the dimensionality of the feature maps, the inception 

blocks use 1x1 kernel convolutions. When this paper is written, 

ResNet architecture [24] is the best deep architecture of CNN in 

term of performance.  

 

Table 1 Selected six standard methods on LFW recognition. 
Method  The use of LFW Preprocessing Descriptor Training set up Face 

alignment 

Used 

Techniques 

Accuracy 

VisionLabs ver. 1.0 [11] LFW-a (aligned 

images) 
 Metric 

learning & 

local image 

Unrestricted 

(with lable-free 

outside data) 

Use external 

data only 

 93.24% 

betaface.com [12] Original LFW Converted to 

grayscale 

 Unrestricted 

(with labeled 

outside data) 

Auto-aligned  98.08% 

Colour & Imaging 

Technology (TCIT) [13] 

Original LFW Calculate the 

average position 

of the facial area 

 Unrestricted 

(with labeled 

outside data) 

 Face Feature 

Positioning 

93.33% 

Aurora-c-2014-1 [14] Original LFW   Unrestricted 

(with labeled 

outside data) 

aligned and 

funneled sets 

and some 

external data 

Aurora’s 

proprietary 

algorithms, 

machine learning 

and computer 

vision tech. 

93.24% 

insky.so [15] Original LFW   Unrestricted 

(with labeled 

outside data) 

  95.51% 

Uni-Ubi [16] Original LFW Converted to 

grayscale 

 Unrestricted 

(with labeled 

outside data) 

Auto-aligned  99.00% 
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Authors in [25] discuss a comprehensive review of historical 

and recent state-of-the-art approaches in deep learning 

applications such as audio, visual and text processing; social 

network analysis; and natural language processing. Issues faced 

in deep learning such as unsupervised learning, black-box 

models, and online learning are further discussed in the paper. 

 

Several works on LFW recognition using CNN include: 

DeepFace [26], lightCNN [27], DeepID [28], DeepID2 [29], 

Baidu [30], DeepID3 [31], Face++ [32], FaceNet [33], and 

VGGFace [34]. Table 2 presents the characteristics of the Deep 

Learning methods. The results of experiment in this paper will 

be compared with the mentioned methods. 

 

 

3. The Enhanced CNN for LFW Recognition 

 

3.1 Data Collection 

 

The experiments use 12339 images and 5653 people taken from 

Labeled Faces in the Wild Homepage [35], and each face has 

been labeled with the name of the person pictured. The number 

of images per person varies a lot; most of the people have just 

one image. The author uses pandas/scripting to group the 

images into four sub-datasets for training and validating 

classification as shown in Table 3. 

 

Table 3 The dataset for experiments. 
Group 

name 

# of 

people 

# of images 

/person 

# of images 

for training 

# of images 

for testing 

LFW-100 5 100 90 10 

LFW-20 74 25 20 5 

LFW-10 152 12 9 3 

LFW-5 423 8 6 2 

 

3.2 The Enhanced CNN for LFW Recognition Method 

 

The proposed method consists of two components. The first 

component is preprocessing. The preprocessing component 

reduces the image dimensional and keeps preserving the 

images’ features. Downsizing the dimensionality (pixel size) of 

the processing images accelerates the CNN training process. 

Firstly, the video data is converted into image frames. Secondly, 

the Nearest-Neighbor algorithm is applied to shrink the image, 

followed by the grey scaling. Then, perform background color 

processing to remove noise using Frame differencing technique. 

Lastly, reduce the pixel sizes using Principle Component 

Analysis (PCA). Fig. 1 depicts the overall architecture of the 

proposed method. 

 

Table 2 The characteristics of Deep Learning methods related to this work. 
Method  Loss Function Architecture # of Networks Features 

DeepFace [26] Softmax  Alexnet 3 Classification using 3D face frontalization  

LightCNN [27] Softmax  Light CNN 1 The use of Light model that is efficient in computational costs  

DeepID [28] Contrastive loss Alexnet 10 Using supervised deep learning on large labeled data sets  

DeepID2 [29] Contrastive loss Alexnet 25 Using supervised deep learning on large labeled data sets  

Baidu [30] Triplet loss CNN-9 10 Using unsupervised deep learning on large labeled data sets  

DeepID3 [31] Contrastive loss VGGNet-10 50 Using supervised deep learning on large labeled data sets  

Face++ [32] Triplet loss GoogleNet-24 1 The use of unified embedding for face recognition and clustering 

and Inception modules for classification 

FaceNet [33] Triplet loss GoogleNet-24 1 The use of unified embedding for face recognition and clustering 

and Inception modules from GoogLeNet 

VGGFace [34] Triplet loss VGGNet-16 1 Improve on training time by reducing the number of parameters in 

the Convolution layers. 

 

 
 

Fig. 1 Overall architecture of the proposed method. 
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The second component is the enhanced CNN. As dealing with 

huge image data, this work proposes a new CNN architecture 

for a face recognition system. The proposed (enhanced) CNN is 

built upon the well-known and a very deep learning CNN 

technique, VGG-19. The steps in the proposed architecture are 

as follow. 

 

1. Integrate recurrent connections inside the convolutional 

layers.  

2. Use Multi-Bias non-linear Activation (MBA) function 

instead of Batch normalization and use Concatenated ReLU 

(CReLU) function instead of ReLU function (Rectified 

Linear Unit). CReLu selects only the positive part of the 

activation whereas ReLU selects only the negative part of 

the activation function. It means that convolutional layer + 

recurrent connections inside + MBA + CReLU compose an 

Enhance Convolutional Layer (ECL). Then use sequence of 

ECLs as an Enhanced Block (EB). 

3. Replace the max-pooling layers by a new efficient 

Generalizing pooling layers to adapt to complex patterns. 

4. Use data augmentation 

5. Eliminate fixed input image constraint using Spatial 

Pyramid Pooling (SPP) layer before the fully connected. 

 

Figures 2 and 3 show the architecture of the proposed CNN and 

the enhanced convolutional layer, respectively. 

4. Experimental Set up and Results Discussion 

 

4.1 Experimental Set up 

 

The proposed method is implemented using Python language 

programming Version 3.7.1, Keras and Tensorflow 

utilities/libraries [36] on a high-end PC with the following 

specifications. CPU: VPS 2 core, 16GB RAM, and 2TB SSD 

storage; GPU of 8 cores and 512MB RAM.  

 

4.2 Experimental Results and Discussion 

 

Figures 4(a) to 4(f) show the sequence of executing the CNN on 

the Tensorflow. The figure confirmed that the processes are 

working properly. 

 

Figures 5 and 6 show the accuracy of training process and 

testing process, and loss of training process and testing process 

for the LFW-100 sub-dataset, respectively. As we can observe 

in Fig. 5(a), the accuracy during the training process converges 

fast, due to the good filtering in the Convolution Layer. The 

same trend is for the accuracy measurement during the testing 

as shown in Fig. 5(b). Accordingly, the value of the loss 

function during training converges quickly to zero value as 

shown in Fig. 6(a) Almost with the same trend, the loss during 

testing drop drastically after executing 5000 data, see Fig. 6(b). 

 

 

Fig. 2 The proposed enhanced CNN architecture. 

 

 

Fig. 3 The enhanced convolution layer. 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) (f) 
Fig. 4 Sequence of process execution. 
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(a) Training Accuracy results. 

 

 
(b) Testing Accuracy results. 

Fig. 5 Training and Testing Accuracy results. 

 

 
(a) Training loss. 

 

 
(b) Testing loss. 

 

Fig. 6 Training and testing loss results. 
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Figure 7 depicts a snapshot of running method during the 

testing process on LFW-100 data. 

 

 
 

Fig. 7 Snapshot of accuracy during the testing process. 

 

Table 4 shows the best results of accuracy for each sub-dataset. 

As we can observe the use of LFW-100 dataset provides the 

highest accuracy of the recognition/verification. The experiments 

do not apply any learning rate strategies that is why, the sub-

datasets with smaller size do not perform well. 

 

Table 4. The accuracy for each sub-dataset. 

Group 

name 

# of 

people 

# of 

images/person 

# of 

images 

(training) 

# of 

images 

(testing) 

The best 

accuracy 

(%) 

LFW-100 5 100 90 10 99.91 

LFW-25 74 25 20 5 94.88 

LFW-12 152 12 9 3 86.90 

LFW-8 423 8 6 2 76.84 

 

Table 5 shows the comparison of the accuracy of the proposed 

method with the existing methods presented in [37]. The best 

accuracy of the proposed method during the testing phase is 

99.91% for the LFW-100 dataset. Six methods (DeepID2, 

Baidu, Face++, FaceNet, VGGFace) achieved accuracy above 

99%. DeepID2 and DeepID3 achieved good accuracy because it 

uses a greater number of networks compare the DeepID that 

uses same architecture (AlexNet). Baidu achieved a good 

performance because it implements CNN-9 which is better that 

AlexNet, and it also apply unsupervised learning. Face++ and 

FaceNet also performed well because they use Inception 

modules from GoogLeNet and unified embedding for face 

recognition and clustering. They are more efficient due to the 

decrease of parameters to 20 times lesser. Not only give a good 

accuracy, these two methods provide fast training and testing 

processing time. Finally, VGGNet provided a good result 

because it uses efficient mechanism in Convolution Layer that 

decreases the parameters. 

 

Table 5 Accuracy Comparison. 

Method  # Model  
Outside  

data 
# Layers 

Accuracy 

(%)  

DeepFace [26] 4 4M 8 97.35 

LightCNN [27] 60 203K 7 96.45 

DeepID [28] 60 203K 7 97.45 

DeepID2 [29] 25 203K 7 99.15 

Baidu [30] 25 290K 7 99.47 

DeepID3 [31] 25 290K 10-15 99.53 

Face++ [32] 1 5M 10 99.50 

FaceNet[33] 1 260M 22 99.60 

VGGFace[34] 20 1M 12 99.65 

Proposed Method (on 

LFW-100 dataset) 
1 5M 128 99.91 

 

5. Conclusion  

This paper proposed an enhanced CNN for LFW recognition. 

The best experimental result using benchmark dataset from 

LFW portal achieved 99.91% accuracy for sub-dataset with 100 

images/person. As carried out by Parkhi et al. [34], this paper 

compared the enhanced CNN with other similar methods that 

used the same LFW dataset. The comparison results showed 

that the enhanced CNN outperformed existing CNNs. 

 

Currently, the author is working on feature extraction of 

ethnical faces using the available LFW dataset. Once the 

ethnical face features available and since the proposed CNN 

achieved good results in accuracy, the author plans to use the 

proposed CNN as the core recognition engine for real time 

crowd accident alert system during hajj session, in the near 

future.  

 

Other future work, the author considers also working on Cross-

Pose LFW (CPLFW) as a challenge in face recognition with the 

aim to increase the accuracy due to big data driven machine 

learning methods, the performance on the database approaches 

nearly 100%.  
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