



# Course Specification (Bachelor)

Course Title: Data Engineering

Course Code: SE1505

**Program: Software Engineering** 

**Department: Software Engineering** 

**College: Faculty of Computer Science and Information Technology** 

Institution: Al-Baha University

Version: V1.0

Last Revision Date: 24-April-2024







# **Table of Contents**

| A. General information about the course:                                          | 3 |
|-----------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment<br>Methods | 4 |
| C. Course Content                                                                 | 6 |
| D. Students Assessment Activities                                                 | 7 |
| E. Learning Resources and Facilities                                              | 7 |
| F. Assessment of Course Quality                                                   | 8 |
| G. Specification Approval                                                         | 9 |





#### A. General information about the course:

#### **1. Course Identification**

| 1. C                                                                                          | 1. Credit hours: ( 3 )                                                 |          |           |        |        |         |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------|-----------|--------|--------|---------|
|                                                                                               | 3 Credit Hours (2, 2, 0) (Lecture, Lab, Tutorial)<br>(4 Contact Hours) |          |           |        |        |         |
| 2. C                                                                                          | ourse type                                                             |          |           |        |        |         |
| Α.                                                                                            | □University                                                            | □College | 🛛 Departm | ent    | □Track | □Others |
| В.                                                                                            | oxtimes Required                                                       |          |           | Electi | ve     |         |
| 3. Level/year at which this course is offered: ( 8 <sup>th</sup> Level/3 <sup>rd</sup> Year ) |                                                                        |          |           |        |        |         |
| 4. C                                                                                          | 4. Course General Description:                                         |          |           |        |        |         |

This course provides students with a foundation for data science concepts, data science thinking, and analytics, and forms an important part of all businesses. This course will help students to explore various tools and methods that are used for understanding the data engineering process and how to tackle challenges commonly faced in different aspects of data engineering. Students start with an introduction to data modeling. ETL Processes, Database Systems, Big Data Technologies, and Data Warehousing.

Students will learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases and build data pipelines. Using real-world examples, you'll build architectures on which you'll learn how to deploy data pipelines.

**5.** Pre-requirements for this course (if any): Database 1 (SE1003)

6. Pre-requirements for this course (if any): None

7. Course Main Objective(s):

The main objectives of this course are





- Students will have gained a foundation for data science concepts, data science thinking and analytics.
- Students will be able to identify the problems and tasks involved in the life cycle of a data science project, including data collection, data preprocessing and data analysis.
- Students will have gained a clear understanding of data modeling techniques.
- Students will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.

#### **2. Teaching mode** (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1  | Traditional classroom                                                     | 22            | 66%        |
| 2  | E-learning                                                                |               |            |
| 3  | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4  | Distance learning                                                         |               |            |
| 5  | Other (Lab)                                                               | 22            | 34%        |

#### **3. Contact Hours** (based on the academic semester)

| No    | Activity          | Contact Hours |
|-------|-------------------|---------------|
| 1.    | Lectures          | 22            |
| 2.    | Laboratory/Studio | 22            |
| 3.    | Field             |               |
| 4.    | Tutorial          |               |
| 5.    | Others (specify)  |               |
| Total |                   | 44            |

# **B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment** Methods





| Code | Course Learning<br>Outcomes                                                                                                | Code of CLOs<br>aligned with<br>program | Teaching<br>Strategies                | Assessment<br>Methods                                                                                            |
|------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1.0  | Knowledge and understa                                                                                                     | nding                                   |                                       |                                                                                                                  |
| 1.1  | Students will be able to<br>Understand how data<br>engineering supports data<br>science workflows                          | К1                                      | - Lectures                            | Direct Assessment<br>Tool<br>Midterm Exam<br>Final exam<br>Indirect<br>Assessment Tool<br>Course Exit Survey     |
| 1.2  | Students will be able to<br>understand staging and<br>validation to check data<br>before loading in the data<br>warehouse. | K2                                      | - Lectures<br>- Lab Work              | Direct Assessment<br>Tool<br>Midterm exam<br>Final exam<br>Indirect<br>Assessment Tool<br>Course Exit Survey     |
| 1.3  | Students will be able to<br>understand how to<br>deploy pipelines in the<br>production environment                         | КЗ                                      | - Lectures<br>-Lab Work               | Direct Assessment<br>Tool<br>Midterm exam<br>Final exam<br>Indirect<br>Assessment Tool<br>Course Exit<br>Survey  |
| 2.0  | Skills                                                                                                                     |                                         |                                       |                                                                                                                  |
| 2.0  | Demonstrate how to<br>implement a data<br>pipeline and dashboard to<br>visualize results.                                  | S1                                      | - Lectures<br>- Lab work<br>- Project | Direct Assessment<br>Tool<br>Project (rubric)<br>Final exam<br>Indirect<br>Assessment Tool<br>Course Exit Survey |
| 2.2  | Discover how to extract<br>data from files and<br>databases and then clean,<br>transform, and enrich it                    | S2                                      | - Lectures<br>- Lab work<br>- Project | Direct Assessment<br>Tool<br>Project (rubric)<br>Final exam<br>Indirect<br>Assessment Tool<br>Course Exit Survey |
| 2.3  |                                                                                                                            |                                         |                                       |                                                                                                                  |
| 3.0  | Values, autonomy, and r                                                                                                    | esponsibility                           |                                       |                                                                                                                  |
| 3.1  | Recognize the importance<br>of teamwork,<br>collaboration, and                                                             | V1                                      | -Small Groups                         | Direct Assessment<br>Tool                                                                                        |





| Code | Course Learning<br>Outcomes                                                                                                                                         | Code of CLOs<br>aligned with<br>program | Teaching<br>Strategies | Assessment<br>Methods                                                                                  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------|
|      | communication in the<br>design and development<br>of secure software<br>systems. Furthermore the<br>importance of giving and<br>receiving constructive<br>feedback. |                                         |                        | Project<br>Presentation<br>(rubric)<br><i>Indirect</i><br><i>Assessment Tool</i><br>Course Exit Survey |

# **C.** Course Content

| No | List of Topics ( Lectures)                                                                                                                                                                                   | Contact Hours |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1. | Introduction to Fundamentals of Data Science: Definition, History,<br>Data, Information, Knowledge, Intelligence, Big Data Versus Small<br>Data, applications of Data Science and Process-Based Data Science | 3             |
| 2. | Data Pipelines: Understanding the design and construction of data pipelines                                                                                                                                  | 2             |
| 3. | Data Flow: Grasping the flow of data through different stages of processing, transformation, and storage within a data engineering ecosystem                                                                 | 3             |
| 4. | Data Storage and Retrieval: Knowledge of various data storage technologies                                                                                                                                   | 3             |
| 5. | Data Processing and Transformation:                                                                                                                                                                          | 3             |
| 6. | Data Integration and ETL (Extract, Transform, Load):                                                                                                                                                         | 2             |
| 7. | Data Warehousing:                                                                                                                                                                                            | 3             |
| 8. | Big Data Technologies:                                                                                                                                                                                       | 3             |
| 9  | Cloud Computing for Data Engineering:                                                                                                                                                                        | 3             |
|    | Total                                                                                                                                                                                                        | 25            |

| No | Lab Topics                                                    | Contact Hours |
|----|---------------------------------------------------------------|---------------|
| 1  | Reading and Writing Files and Working with Databases          | 3             |
| 2  | Lebesgue Cleaning, Transforming, and Enriching Data           | 3             |
| 3  | Building a 311 Data Pipeline                                  | 3             |
| 4  | Features of a Production Pipeline                             | 3             |
| 5  | Version Control Using the NiFi Registry                       | 3             |
| 6  | Monitoring and Logging Pipelines. Deploying your Pipelines    | 4             |
| 7  | Building a Production Data Pipeline, Building a Kafka Cluster | 3             |
|    | Total                                                         | 22            |





### **D. Students Assessment Activities**

| No | Assessment Activities *        | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|--------------------------------|--------------------------------------|-----------------------------------------|
| 1. | Lab Work                       | Weekly                               | 20%                                     |
| 2. | Midterm Exam                   | 6                                    | 20%                                     |
| 3. | Final Project and Presentation | 11                                   | 20%                                     |
| 4. | Final Exam                     | 12                                   | 40%                                     |

\*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

#### **E. Learning Resources and Facilities**

# **1.** References and Learning Resources

| Essential References     | <ul> <li>Data Engineering with Python: Work with massive datasets to design data models and automate data pipelines using Python, Paul Crickard, Packt publishing Birmingham – MUMBAI, 2020. ISBN-13: 978-1839214189</li> <li>Data Engineering with Apache Spark, Delta Lake, and Lakehouse: Create scalable pipelines that ingest, curate, and aggregate complex data in a timely and secure way, Manoj Kukreja, Packt , 2021.</li> </ul> |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    | <ul> <li>ACM (Association for Computer Machinery) Curricula<br/>Recommendations 2 -<br/>http://www.acm.org/education/curricula-<br/>recommendations</li> </ul>                                                                                                                                                                                                                                                                             |
| Electronic Materials     | <ul> <li>Access to the Saudi Digital Library (SDL).</li> <li>Using the learning management system of the university –<br/>Rafid System (https://lms.bu.edu.sa/).</li> </ul>                                                                                                                                                                                                                                                                |
| Other Learning Materials | Nielsen Norman Group: https://www.nngroup.com/                                                                                                                                                                                                                                                                                                                                                                                             |

# 2. Required Facilities and equipment

| Items                                                                                        | Resources                                                        |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| <b>facilities</b><br>(Classrooms, laboratories, exhibition rooms,<br>simulation rooms, etc.) | • A classroom or lecture hall with a whiteboard for 25 students. |





| Items                                                                | Resources                                                                                                                                                  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Technology equipment</b><br>(projector, smart board, software)    | <ul> <li>A digital image projection system with a connection to a desktop computer and laptop computer.</li> <li>High speed Internet connection</li> </ul> |
| <b>Other equipment</b><br>(depending on the nature of the specialty) | None                                                                                                                                                       |

# F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor                                                                                                                                                     | Assessment Methods                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effectiveness of teaching                   | <ul> <li>Students</li> <li>Faculty</li> <li>Peer Reviewers</li> <li>Program Leader</li> <li>Course Coordinator</li> </ul>                                    | <ul> <li>Surveys (indirect).</li> <li>Direct feedback from<br/>students.</li> <li>Course evaluation by Peer<br/>Reviewers (indirect).</li> <li>Class visit by Program<br/>Leader (indirect).</li> <li>Comprehensive Course<br/>report (where we can find<br/>information about teaching<br/>difficulties and action plan)</li> </ul> |
| Effectiveness of<br>Students assessment     | <ul> <li>Students</li> <li>Faculty</li> <li>Peer Reviewers</li> <li>Program Leader</li> <li>Exam Evaluation Committee</li> <li>Course Coordinator</li> </ul> | <ul> <li>Surveys (indirect).</li> <li>Direct feedback from students.</li> <li>Course evaluation by Peer Reviewers (indirect).</li> <li>Class visit by Program Leader (indirect)</li> <li>Exam evaluation by the Exam Evaluation Committee (indirect)</li> </ul>                                                                      |
| Quality of learning resources               | <ul> <li>Students</li> <li>Faculty</li> <li>Peer Reviewers</li> <li>Course Coordinator</li> </ul>                                                            | <ul> <li>Surveys (indirect)</li> <li>Course evaluation by Peer<br/>Reviewers (indirect).</li> <li>Comprehensive Course<br/>report (where we can find<br/>information about<br/>difficulties and challenges<br/>about learning resources<br/>as well as consequences<br/>and action plan)</li> </ul>                                  |
| The extent to which CLOs have been achieved | <ul><li>Faculty</li><li>Program Leader</li><li>Course Coordinator</li></ul>                                                                                  | <ul> <li>Student Results (direct)</li> <li>Comprehensive Course<br/>report (where we can find<br/>the CLO assessment<br/>results)</li> </ul>                                                                                                                                                                                         |

#### Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify)





| <b>Assessment Methods</b> | (Direct, Indirect) |
|---------------------------|--------------------|
|---------------------------|--------------------|

# G. Specification Approval

| COUNCIL /COMMITTEE | Curriculum Committee |
|--------------------|----------------------|
| REFERENCE NO.      |                      |
| DATE               | 28 April 2024        |

