

Course Title: Distributed Systems Security

Course Code: CYBS60304

Program: M.Sc. in Cybersecurity

Department: Department of Computers Science

College: Faculty of Computing and Information

Institution: Al-baha University

Version: 1

Last Revision Date: *Pick Revision Date.*

2023

TPG-153

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	6
D. Students Assessment Activities:	7
E. Learning Resources and Facilities:	7
F. Assessment of Course Quality:	8
G. Specification Approval Data:	8

A. General information about the course:

1. Course Identification:

1. C	1. Credit hours: (3)				
3	3				
2. C	2. Course type				
Α.	□University	□College	Department	□Track	
В.	□ Required ⊠ Elective				
3. L	3. Level/year at which this course is offered: (2/3 or 2/4)				

4. Course general Description:

This course provides a background for the basic topics in distributed systems, followed by a holistic insight into current security issues, processes, and solutions. It maps out future directions in today's distributed systems. This insight is elucidated by modelling modern distributed systems using a four-tier (layer) logical model: a host layer, an infrastructure layer, an application layer, and a service layer (bottom to top). This course provides a general introduction to distributed systems concepts with examples. It explains the different terms used in distributed systems, such as Protocols and Layering, High-Performance Computing, Hypervisors, and Cloud Computing Implementation. The different threats and vulnerabilities in distributed systems are explained. These threats and vulnerabilities, application-level threats and vulnerabilities, and service-level threats and vulnerabilities. Moreover, the applied solutions for these threats and vulnerabilities are explained in this course . For instance, host-level solutions, infrastructure-level solutions, application-level solutions are given in this course.

5. Pre-requirements for this course (if any):

None

6. Pre-requirements for this course (if any):

None

7. Course Main Objective(s):

- Explain the basics components of distributed system with real working examples.
- Explain the role of operating system processes in distributed systems.
- Describe security threats and issues across four-tier logical model –host layer, infrastructure layer, application layer, and service layer.

- Describe the approaches required for efficient security engineering, alongside exploring how existing solutions can be leveraged or enhanced to proactively meet the dynamic needs of security for the next-generation distributed systems.
- Report and Solve security issues in distributed systems.
- Communicate effectively through oral presentations, computer presentations and written reports.
- Work as teamwork.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	26	80%
2	E-learning	7	20%
	Hybrid		
3	Traditional classroom		
	E-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	33
2.	Laboratory/Studio	-
3.	Field	-
4.	Tutorial	-
5.	Others (specify)	-
	Total	33

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning	Code of PLOs aligned	d Teaching Assessment	
	Outcomes	with program	Strategies	Methods
1.0	Knowledge and understanding			

Code	Course Learning Outcomes	Code of PLOs aligned with program	l Teaching Strategies	Assessment Methods
1.1	Explain the compone and interfaces of networking standa provided.	nts a K1 ard	 Lectures Assignments Group Discussions 	 Homework Presentations Midtermexam Quiz Final Exam
1.2	Describe a process in operating system a introduce vario architectures for runn processes and enabl their communication.	an Ind Dus K2 ing ing	 Lectures Assignments Group Discussions 	 Homework Presentations Midtermexam Quiz Final Exam
1.3	Explain High performan computing (HPC) and u cases that differentia HPC from the standa Internet servers.	nce use ate K3 ard	LecturesAssignmentsGroup Discussions	 Homework Presentations Midtermexam Quiz Final Exam
1.4	Explain the types a sources of risks that aff the four-tier logical mo –host layer, infrastructu layer, application lay and service layer.	ind ect del ure K4 rer,	 Lectures Assignments Group Discussions 	 Homework Presentations Midtermexam Quiz Final Exam
1.5	Describe the approach required for efficie security engineeri alongside exploring h existing solutions can leveraged or enhanced proactively meet to dynamic needs of secur for the next-generation	nes ent ng, ow K5 be to to :he rity ion	 Lectures Assignments Group Discussions 	 Homework Presentations Midtermexam Quiz Final Exam

Code	Course Learning Outcomes	Code of PLOs aligned with program	Teaching Strategies	Assessment Methods
2.0	Skills			
2.1	Examine the attack surfaces of the different distributed computing models, emphasizing that every interface introduces potential vulnerabilities.	\$1	Case Studies	PresentationsFinal Exam
2.2	Analyze and Solve security issues in distributed systems.	S2	Case Studies	
3.0	Values, autonomy, and responsibility			
3.1	Communicate effectively through oral presentations, computer presentations and written reports.	V.1	Project assignment in Small groups Oral presentation	Course project presentation and report
3.2	Work in groups	V2	• Lab assignment Small groups Oral presentation	Course project presentation and report

C. Course Content:

No	List of Topics	Contact Hours
1.	1.1 Distributed Systems General Concepts1.2 High Performance Computing	3
2.	2.1 Protocols and Layering in distributed systems2.2 Hypervisors and Cloud Computing Implementation	3
3.	Vulnerabilities and Exploit Examples (Common security issues and technologies)	3
4.	Host-level threats and vulnerabilities	3
5.	Infrastructure-level threats and vulnerabilities	3
6.	Application-level threats and vulnerabilities	3
7.	Service-level threats and vulnerabilities	3
8.	Infrastructure-level and Host-level solutions	3

9.	Application-level and Service-level solutions	3
10.	Case Study: Compliance and Financial services	3
11.	Case Study: Grid/Cloud Computing	3
	Total	33

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Home work	Weekly	10%
2.	Mid-term exam	6	20%
3.	Quiz	10	10%
4.	Course project/Case Studies presentation and report	11	10%
5.	Final Exam	12	50%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	 Abhijit Belapurkar, Distributed Systems Security: Issues, Processes an Solutions, Anirban Chakrabarti, Wiley 2009. Maarten van Steen and Andrew Tanenbaum ,Distribute Systems: Principles and Paradigms, 3rd (3.01) edition. 			
Supportive References	 Communications of ACM (Association for Computer Machinery) - <u>http://cacm.acm.org/</u> Journal of the ACM - <u>http://jacm.acm.org/</u> 			
Electronic Materials	 Access to the Saudi Digital Library (SDL). Using the learning management system of the university – Rafid System (<u>https://lms.bu.edu.sa/</u>). IEEE/ACM Transactions on Networking <u>https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=90</u> 			
Other Learning Materials				

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities	 A classroom or lecture hall with whiteboard for 25 students. A laboratory with 25 computers.

Items	Resources
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	
Technology equipment (Projector, smart board, software)	 All students shall have A laptop or access to a desktop computer with access to a programming development tool High speed Internet connection Power outlets for student's laptop plug-in Relevant programming software for use of students.
Other equipment (Depending on the nature of the specialty)	The laboratory should have computers with programming development tools.

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students - Program Leaders	Indirect
Effectiveness of students assessment	Program Leaders	Indirect
Quality of learning resources	Students	Indirect
The extent to which CLOs have been achieved	Peer reviewers	Direct
Reviewing course effectiveness and planning for improvement.	Program Leaders - Faculty	Direct

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	
REFERENCE NO.	
DATE	

