T-104
2022

Course Specification

Course Title: **Theory of Computation** 

Course Code: CS1507

**Program: Computer Science** 

Department: Computer Science and Engineering

**College: Computer Science and Information Technology** 

Institution: Albaha University

Version: 1

Last Revision Date: 6/4/2023





# Table of Contents:

| Content                                                                                                         | Page |
|-----------------------------------------------------------------------------------------------------------------|------|
| A. General Information about the course                                                                         | 3    |
| <ol> <li>Teaching mode (mark all that apply)</li> <li>Contact Hours (based on the academic semester)</li> </ol> | 3    |
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods                                  | 4    |
| C. Course Content                                                                                               | 5    |
| D. Student Assessment Activities                                                                                | 5    |
| E. Learning Resources and Facilities                                                                            | 6    |
| 1. References and Learning Resources                                                                            | 6    |
| 2. Required Facilities and Equipment                                                                            | 6    |
| F. Assessment of Course Qualit                                                                                  | 6    |
| G. Specification Approval Data                                                                                  | 7    |





#### A. General information about the course:

| Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Course Identification                               |                            |       |        |        |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|-------|--------|--------|---------|
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Credit hours:                                       |                            |       |        |        |         |
| 2. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Course type                                         |                            |       |        |        |         |
| a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | University □                                        | College □                  | Depar | tment⊠ | Track□ | Others□ |
| b.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Required ⊠                                          | Elective□                  |       |        |        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level/year at wh<br>ered: Level 8 / 3 <sup>rd</sup> | ich this course is<br>Year |       |        |        |         |
| 4. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Course general D                                    | escription                 |       |        |        |         |
| <b>4.</b> Course general Description  This Course introduces the theory of computation through a set of abstract machines that serve as models for computation - finite automata, pushdown automata, and Turing machines - and examines the relationship between these automata and formal languages. Additional topics beyond the automata classes themselves include deterministic and nondeterministic machines, regular expressions, context free grammar, undecidability, and the P = NP question. |                                                     |                            |       |        |        |         |

#### 5. Pre-requirements for this course (if any):

#### Introduction to Computing and Algorithms (CS1002)

- 6. Co-requirements for this course (if any):
- 7. Course Main Objective(s)

The main purpose for this course is to teach students how to:

- Use different computational models to recognize or generate languages.
- Understand language classification according to computational modulization.
- Prove a language is decidable/undecidable.
- Prove a language is recognizable/unrecognizable.
- Prove a language is P, NP or NP-complete

#### 1. Teaching mode (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1. | Traditional classroom                                                     | 33            | 50%        |
| 2. | E-learning                                                                |               |            |
| 3. | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> | 33            | 50%        |
| 4. | Distance learning                                                         |               |            |

#### **2. Contact Hours** (based on the academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1. | Lectures          | 33            |
| 2. | Laboratory/Studio |               |
| 3. | Field             |               |
| 4. | Tutorial          |               |
| 5. | Others (specify)  |               |
|    | Total             |               |





# B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning Outcomes                                                                                                                   | Code of CLOs<br>aligned with<br>program | Teaching Strategies                                                                     | Assessment<br>Methods                                                                               |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1.0  | Knowledge and understanding                                                                                                                |                                         |                                                                                         |                                                                                                     |
| 1.1  | Discuss key notions of computation, such as algorithm, computability, decidability, reducibility, and complexity, through problem solving. | <b>K</b> 1                              | <ul><li>Lecture</li><li>Assignments</li></ul>                                           | <ul><li>Assignments<br/>(rubric)</li><li>Midterm exams</li><li>Quizzes</li><li>Final Exam</li></ul> |
| 1.2  | Explain the models of computation, including formal languages, grammars and automata, and their connections.                               | К2                                      | <ul><li>Lectures</li><li>Assignments</li></ul>                                          | <ul><li>Assignments<br/>(rubric)</li><li>Midterm exams</li><li>Quizzes</li><li>Final Exam</li></ul> |
| 1.3  | State and explain the Church-Turing thesis and its significance.                                                                           | K2                                      | <ul><li>Lectures</li><li>Assignments</li></ul>                                          | <ul><li>Assignments<br/>(rubric)</li><li>Midterm exams</li><li>Quizzes</li><li>Final Exam</li></ul> |
| 2.0  | Skills                                                                                                                                     |                                         |                                                                                         |                                                                                                     |
| 2.1  | Analyze and design finite automata, pushdown automata, Turing machines, formal languages, and grammars.                                    | <b>S</b> 1                              | <ul><li>Lectures</li><li>Assignments</li><li>Case study</li><li>Lab Exercises</li></ul> | <ul> <li>Quizzes</li> <li>Midterm exams</li> <li>Project (rubric)</li> <li>Final Exam</li> </ul>    |
| 2.2  | Solve computational problems regarding their computability and complexity and prove the basic results of the theory of computation.        | S2                                      | <ul><li>Lectures</li><li>Assignments</li><li>Case study</li><li>Lab Exercises</li></ul> | <ul> <li>Quizzes</li> <li>Midterm exams</li> <li>Final Exam</li> <li>Project (rubric)</li> </ul>    |





| Code | Course Learning Outcomes             | Code of CLOs<br>aligned with<br>program | Teaching Strategies | Assessment<br>Methods |
|------|--------------------------------------|-----------------------------------------|---------------------|-----------------------|
| 3.0  | Values, autonomy, and responsibility |                                         |                     |                       |
| 3.1  | Initiate groups collaboratively      | V1                                      | Small groups        | Project (rubric)      |

# C. Course Content

| No | List of Topics                     | Contact Hours |
|----|------------------------------------|---------------|
| 1. | Formation of Preliminary Concepts. | 3             |
| 2. | Regular Languages                  | 3             |
| 3  | Context-Free Languages             | 6             |
| 4  | The Church-Turing Thesis           | 3             |
| 5  | Decidability                       | 3             |
| 6  | Reducibility                       | 3             |
| 7  | Advanced Topics in Computability   | 3             |
| 8  | Time Complexity                    | 3             |
| 9  | NP-completeness                    | 3             |
| 10 | NP-complete problems               | 3             |
|    | Total                              | 33            |

### **D. Students Assessment Activities**

| No | Assessment Activities *                               | Assessment timing (in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------------------------------------|--------------------------------|-----------------------------------------|
| 1. | Weekly assignments exercises/ programming assignments | Every Two<br>Weeks             | 10%                                     |
| 2. | Quizzes                                               | Week 8                         | 10%                                     |
| 3. | Mid Term 1                                            | Week 6                         | 20%                                     |
| 4. | Project                                               | Week 10                        | 10%                                     |
| 5. | Final Exam                                            | Week 12                        | 50%                                     |

<sup>\*</sup>Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)





# E. Learning Resources and Facilities

### 1. References and Learning Resources

| Essential References     | - Introduction to the Theory of Computation, Michael Sipser, 3rd edition, Cengage Learning, 2012.                                                                                                                                                                                                                                       |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    | <ul> <li>Computer Science Curriculum 2013 – http://cs2013.org</li> <li>ACM (Association for Computer Machinery) Curricula</li> <li>Recommendations -</li> <li><a href="http://www.acm.org/education/curricula-recommendations">http://www.acm.org/education/curricula-recommendations</a></li> </ul>                                    |
| Electronic Materials     | <ul> <li>ACM (Association for Computer Machinery) web site - http://www.acm.org/</li> <li>IEEE Computer Society web site - http://www.computer.org/portal/web/guest/home</li> <li>Access to the Saudi Digital Library (SDL). Using the learning management system of the university – Rafid System (https://lms.bu.edu.sa/).</li> </ul> |
| Other Learning Materials | None                                                                                                                                                                                                                                                                                                                                    |

#### 2. Required Facilities and equipment

| Items                                                                           | Resources                                                                                                                              |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.) | A classroom or lecture hall with whiteboard for 25 students.                                                                           |
| Technology equipment (projector, smart board, software)                         | <ul><li>All students shall have:</li><li>High speed Internet connection.</li><li>Power outlets for student's laptop plug-in.</li></ul> |
| Other equipment (depending on the nature of the specialty)                      | None                                                                                                                                   |

# F. Assessment of Course Quality

| Assessment Areas/Issues                     | Assessor                               | Assessment Methods                   |
|---------------------------------------------|----------------------------------------|--------------------------------------|
| Effectiveness of teaching                   | Exams Evaluation committee<br>Students | Direct: Exam Review Indirect: Survey |
| Effectiveness of students assessment        | Faculty                                | Direct: Exams                        |
| Quality of learning resources               | Program Leaders<br>Students            | Indirect: Survey Indirect: Survey    |
| The extent to which CLOs have been achieved | Exams Evaluation Committee<br>Students | Direct: Exam Review Indirect: Survey |
| Other                                       | None                                   | None                                 |

**Assessor** (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) **Assessment Methods** (Direct, Indirect)





# G. Specification Approval Data COUNCIL /COMMITTEE REFERENCE NO. DATE

